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Abstract Sodium montmorillonite has been modified via

cation exchange reaction using gemini surfactants. Mont-

morillonite modified by cetyltrimethyl ammonium bromide

(CTAB) is used for comparation. Basal spacings and

thermal stability of these organo-montmorillonite clays

have been characterized using X-ray diffraction analysis

and thermogravimetric analysis. The d(001) spacings of

montmorillonite-Gemini14, montmorillonite-Gemini16,

montmorillonite-Gemini18 can reach above 35 Å com-

pared with the 23.66 Å of the montmorillonite-CTAB at

2.2CEC. The thermogravimetric analysis show four-step

degradation which corresponds to residual water desorp-

tion, dehydration, followed by decomposition of the

organic modifier and the dehydroxylation of the organo-

montmorillonite. In addition, DTG enables two different

structural arrangements of gemini surfactant molecules

intercalating the montmorillonite to be proposed that is

different from montmorillonite-CTAB.

Keywords Montmorillonite � Gemini surfactants �
Thermogravimetric analysis

Introduction

Smectites are widely used clays by virtue of their high

cation exchange capacity, excellent ability to swell, and

ease with which their surface can be chemically and

physically modified [1–5]. More often than not the smectite

is the montmorillonite, which has two siloxane tetrahedral

sheets sandwiching an aluminium octahedral sheet.

Because of the replacement of silicon by aluminium in the

tetrahedral layers or similar replacement of aluminium ions

by magnesium ions, the montmorillonite layers are nega-

tively charged [6]. Thus, cations such as sodium and cal-

cium ions are attracted to the mineral surface or interlayer

to counterbalance the negative layer charges. The hydra-

tion of inorganic cations on the exchange sites causes the

clay mineral surface to be hydrophilic, therefore, the nat-

ural montmorillonite is a ineffective sorbent for organic

compounds [7]. However, such a difficulty can be over-

come by intercalating cationic surfactants such as quater-

nary ammonium salts into the interlayer space by ion

exchange [8–12]. The intercalating of a cationic surfactant

not only changes the surface properties from hydrophilic to

hydrophobic but also greatly increases the basal spacing of

the layers [13–15].

Organoclays have firstly found wide applications in

pollution prevention and environmental remediation on

account of their efficiency in taking up anthropogenic, non-

ionic organic compounds from aqueous solutions. They

have been shown to be superior to other waste treatment

technologies, especially when the contaminated water

contains substantial amounts of oil, grease, or humic acid

[16–18].

And nowadays, the focus of attention has been on the use

of organoclays as nanometer-size fillers of organic polymers

[19, 20]. The clay polymer nanocomposites have huge

potential industrial use because the dispersion of a small

amount of organoclay in the polymer matrix can dramati-

cally increased strength and heat resistance, biodegradabil-

ity of biodegradable polymers, decreased gas permeability

and flammability [21–23].

As regards organic modification of montmorillonite, most

of the investigation in literature deal with ion-exchanged
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alkylammonium salts. Ammonium surfactants used in

commercially available organoclays usually incorporate

short aliphatic chains and benzyl and sometimes hydroxyl

groups. They also contain at least one long aliphatic chain

(C12–C18) to cause expansion of the distance between the

layers [24, 25]. Other montmorillonite modifiers include

alkyl amines [26], alkyl carbazol [27], poly(dimethylsilox-

ane) [28], and quinolinium [29] or pyridinium [30]. Other

ammonium surfactants are more complex molecules, olig-

omers and reactive groups [31–33]. However little work has

been done using gemini surfactants on intercalating the

montmorillonite. The objective of this study is to investigate

the properties of the montmorillonite modified with gemini

surfactants has different alkyl chain length, and we also use

montmorillonite-CTAB for comparation. Such a study is of

high importance for understanding the structure, properties,

and potential application of these organoclays.

Experimental

Materials

The commercial sodium montmorillonite used in the

present study was supplied by Zhejiang fenghong clay

company, China. The cation exchange capacity (CEC) of

montmorillonite (MMT) is 90 mequiv/100 g as reported by

the supplier. This Na-MMT was used as such without any

further purification.

Synthesis of gemini surfactants

The intermediate bis(2-bromoethyl) ether was synthesized

from diglycol and phosphorus tribromide [34]. All the

surfactants labeled as Gemini12, Gemini14, Gemini16, and

Gemini18 were obtained by refluxing the bis(2-bromoeth-

yl) ether with N-n,alkyl-N,N-dimethylamine in isopropanol

at 78 �C for 48 h. Solvent was removed under vacuum

from the reaction mixture, and the solid thus obtained was

recrystallized three times from ethyl acetate–ethanol sol-

vent mixture (volume ratio is 2:1).

Preparation of surfactant-modified montmorillonites

The synthesis of surfactant-clay hybrids were undertaken

by each of the following procedure: 5 g of dehydrated

montmorillonite was first dispersed in about 300 mL of

distilled water, to which the surfactant was slowly added.

The concentrations of surfactants were all at 2.2CEC of

montmorillonite in order to make fully exchange of sodium

ions. The reaction mixtures were stirred vigorously with

magnetic stirrer at 500 rpm for 6 h at 75 �C, filtered in

vacuum, washed with deionised water to remove bromide

anions as confirmed by AgNO3 test. The organically

modified montmorillonites were dried in an air circulatory

oven for 4 h at 90 �C, then ground and sieved through 280

mesh and kept in a sealed bottle for later use.

X-ray diffraction measurements

The Na-MMT and surfactant-modified montmorillonites

were pressed in stainless steel sample holders. X-ray dif-

fraction (XRD) at low angle section patterns were recorded

using CuKa radiation (k = 1.5418 Å) on a Philips PANa-

lytical X’Pert PRO Diffractometer operating at 40 kV and

40 mA with variable divergence slit and 0.125� antiscatter,

between 0.5� and 10� (2h) at a step size of 0.0167�
(2h s-1).The distance between the interlamellar, the so-

called basal spacing was calculated by Bragg-reflections

from data determined by X-ray diffraction measurements.

Thermogravimetric analysis

Thermogravimetric analysis and differential scanning cal-

orimetry of the surfactant-modified montmorillonites were

obtained using a TA Instruments Inc. SDTQ600 high-res-

olution thermoanalyser. Approximately 20 mg of finely

ground sample was placed in an aluminum oxide pan and

heated over a temperature of 50–900 �C at a scanning rate

of 10 �C min-1 under high-purity nitrogen atmosphere

with a gas flow rate of 40 cm3 min-1. All the samples were

dried at 90 �C in vacuum during 24 h before the analysis.

Results and discussion

Powder X-ray diffraction analysis

With the cation exchange of the sodium ion for the cationic

surfactant, expansion of the montmorillonite layers occurs.

This expansion is readily measured by X-ray diffraction.

The d(001) spacings calculated by Bragg-reflections from

data determined by X-ray diffraction measurements were

shown in Fig. 1. The Na montmorillonite has a d(001)

spacing of 15.30 Å while the montmorillonite-CTAB is

23.66 Å which is paraffin-monolayer arrangement of

CTAB in the interlayer space of montmorillonite [35].

After the montmorillonite is exchanged with Gemini12 at

the 2.2CEC level, d(001) spacing is observed at 20.48 Å.

This implies a pseudotrilayer arrangement of Gemini12 in

the interlayer space of montmorillonite. But as for mont-

morillonite-Gemini14, it shows double peaks at 35.84 and

19.36 Å, the peak at 35.84 Å should correspond to paraf-

fin-bilayer arrangement with tilt angle of carbon chains, the

peak at 19.36 Å reflects paraffin-monolayer arrangement

which means the alkyl chains assume a tilted upright
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position to the aluminosilicate surface [6, 7]. The former

peak is stronger in intensity which means paraffin-bilayer

arrangement takes bigger portion in this organoclays. With

the increasing alkyl chain length, montmorillonite-Gem-

ini16, montmorillonite-Gemini18, they also show double

peaks at 37.36, 19.40 and 38.83 Å, 20.20 Å, respectively.

That is to say, the d(001) spacing increases with the

increasing of alkyl chain length of gemini surfactant

intercalated into the montmorillonite. Compared montmo-

rillonite-Gemini16 with montmorillonite-CTAB, although

the size of surfactant Gemini16 is almost two times big as

the CTAB, if look Gemini16 as two CTAB moleculars, the

d(001) spacing of the montmorillonite-Gemini16 should be

47.2 Å, but from the experiment data it is 37.36 Å, so it

can also be concluded that montmorillonite-Gemini16

arrangements from paraffin-monolayer to paraffin-bilayer.

Thermogravimetric analysis

The thermal stability of organoclay can be determined

by the use of thermogravimetric techniques. Figure 2 displays

the TG and DTG results for the Na-montmorillonite without

intercalation with the surfactant. Figures 3, 4, 5, 6 and 7

show the TG and DTG for montmorillonite-CTAB, mont-

morillonite-Gemini12, montmorillonite-Gemini14, mont-

morillonite-Gemini16 and montmorillonite-Gemini18. Mass

loss percentage during different steps determined from these

TG patterns is shown in Table 1.
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Fig. 1 X-ray diffraction patterns of Na-montmorillonite and surfac-

tant-modified montmorillonite
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Fig. 2 TG and DTG of Na-montmorillonite
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Fig. 3 TG and DTG montmorillonite-CTAB
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Fig. 4 TG and DTG montmorillonite-Gemini12
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Fig. 5 TG and DTG montmorillonite-Gemini14
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It is noted that the DTG of the unmodified montmoril-

lonite has three mass loss steps at between ambient and

85 �C, secondly from 85 to 183 �C, the third from 500 to

820 �C. These three mass loss steps are attributed to

desorption of water from clay, dehydration of water adsorbed

by metal cations such as Na? and Ca2?, and dehydroxylation

of the structural OH units of the montmorillonite respec-

tively [15, 36].

Four steps of the mass loss steps are observed for the

montmorillonite-CTAB. The first step form the ambient to

95 �C temperature range and is attributed to the desorption

of water. The second step occurs from 125 to 185 �C, the

very small peak is assigned to the loss of hydration water

from the Na? ions. The third step in the temperature of

190–500 �C should attributed to the decomposition of the

surfactant. It is found that there are three peaks in this

range, the peaks at 210–290, 300–355, 380–480 �C corre-

spond to the decomposition of the external surface, phys-

ically adsorbed surfactant, interlayer-adsorbed surfactant

molecules, and intercalated surfactant cations, respectively

[5, 37, 38]. The fourth mass loss step between 600 to

710 �C is assigned to the loss of structural hydroxyl groups

from within the clay.

For the montmorillonite-Gemini12, there is one step that

is different from the montmorillonite-CTAB, the third step

just has two peaks at 210–330, 350–480 �C, this may be

formulated as the big size of the gemini surfactant mole-

cule is difficult to be adsorbed to the interlayer. The second

reason is that of the strong electrostatic interaction of polar

head group of the gemini surfactant, more surfactants are

inclined to adsorbed to the external surface of the clay, so

the intensity of the peak around 210–330 �C is much

bigger than the montmorillonite-CTAB. With the increas-

ing of alkyl chain length of gemini surfactant, the intensity

of the peak around 210–330 �C is becoming stronger and

350–480 �C weaker, respectively.

Conclusions

Montmorillonite has been successfully modified using a

series of gemini surfactant. Small angle X-ray diffraction

analysis results show that the d(001) spacings of mont-

morillonite-Gemini14, montmorillonite-Gemini16, mont-

morillonite-Gemini18 can reach above 35 Å compared

with the 23.66 Å of the montmorillonite-CTAB at 2.2CEC.

The thermogravimetric analysis show four-step degrada-

tion which corresponds to residual water desorption,

dehydration, followed by decomposition of the organic
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Fig. 6 TG and DTG montmorillonite-Gemini16
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Fig. 7 TG and DTG montmorillonite-Gemini18

Table 1 Results of the TG of Na-MMT and surfactant modified organoclays

Step 1 Step 2 Step 3 Step 4

Mass

loss (%)

Temperature

(�C)

Mass

loss (%)

Temperature

(�C)

Mass

loss (%)

Temperature

(�C)

Mass

loss (%)

Temperature

(�C)

A 3.53 85 0.25 85–183 5.09 500–820

B 2.98 95 1.29 125–185 27.51 190–500 1.49 600–710

C 3.19 81 1.94 110–193 20.76 195–500 2.76 515–720

D 3.07 100 3.02 110–187 32.55 210–470 2.58 490–690

E 2.02 102 2.36 107–185 39.27 195–483 2.30 513–687

F 3.08 105 1.38 112–190 42.91 205–477 0.82 527–680

A, B, C, D, E, F are stand for Na-MMT, MMT-CTAB, MMT-Gemini12, MMT-Gemini14, MMT-Gemini16, MMT-Gemini18, respectively
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modifier and the dehydroxylation of the organo-montmo-

rillonite. In addition, DTG enables two different structural

arrangements of gemini surfactant molecules intercalating

the montmorillonite to be proposed. These organically

modified montmorillonites have potential utility in the

preparation of polymer nanocomposites and in other possible

applications. We therefore feel that the organoclays prepared

in this study can be used to prepare nanocomposites with

polar polymers in order to render good level of dispersion,

improved mechanical and other types of properties.
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